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Dislocation array elements for the analysis 
of crack and yielded zone growth 

N. J. M I L L S  
Department of Physical Metallurgy, University of Birmingham, Birmingham, UK 

Stress fields were found for boundary elements that consist of linear arrays of disloca- 
tions, or arrays of dislocations that simulate a crack tip. A number of two-dimensional 
elastic boundary value problems were solved using these elements. Crack growth paths 
were predicted for pairs of interacting cracks and the energetics of multiple crack growth 
away from a free surface was analysed. In certain simple elastic-plastic problems, where 
the general shape of the plastic zone is known, the plastic zone size was predicted. 

1, Introduction 
Several simple crack problems have been solved 
analytically using continuous distributions of  edge 
dislocations as a way of modelling the stress con- 
ditions at the crack surfaces [1, 2]. However, many 
crack.problems of interest are geometrically more 
complex than this and hence cannot easily be 
solved analytically; for example, the crack may be 
curved, there may be several interacting or 
branched cracks, and the specimen boundaries 
may not lie at infinity. To deal with such problems 
numerical methods of solution using boundary 
elements have been developed. 

Crouch [3] and Markinowski [4] have devel- 
oped constant displacement elements based on a 
finite number of edge dislocations around the 
boundary of the body, see Fig. la. Such simple 
elements produce an acceptable model but there 
are several disquieting factors that limit its appli- 
cability. Firstly, it will be shown later that the 
tensile stress normal to the element, when averaged 
over the element length, has an infinite value; 
hence, evaluating the stress at the mid-point of the 
segment [3] may lead to significant errors. 
Secondly, the stress field close to the ends of the 
elements will be inaccurate, though that present 
at a distance from the elements will be acceptable 
by St Venant's principle. The stress field near the 
end of a crack needs to be evaluated if crack 
growth directions are to be predicted, so for this 
purpose crack tip elements are almost essential. 

The stress field of  an edge dislocation and a 
point force in a plane are similar in many ways [5, 
6] so that boundary elements using a single point 
force on each element [7], are similar in capabilities 
to constant displacement elements. Isida [8] has 
described briefly the use of a linear array of pairs 
of point forces. It should be noted that he has 
changed the intervals for evaluating the stress 
boundary conditions from the natural ones of each 
element because the number of unknown element 
parameters must equal the number of  boundary 
stress conditions. 
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Figure I Boundary elements used: (a) constant displace- 
ment  discontinuity between ( - -a ,  0) and (a, 0). (b) to 
(d) halves of  the linear and crack-tip elements, having 
(b) a linear and (c and d) a parabolic variation in the 
displacement discontinuity. The sketches on the right 
indicate the equivalent edge dislocation, each of which 
has a complex Burger's vector. 
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Figure 2 (a) A line yielded zone at a crack tip. (b) A slip 
line field yielded zone at a circular no tch  o f  m a x i m u m  
ex ten t  a. 

In dealing with crack problems, the two main 
linear elastic fracture mechanics parameters are 
the so-called strain energy release rate, G, (strictly 
it is a potential energy release rate) and the stress 
intensity factor, K. In strictly elastic problems, 
G can be evaluated from a boundary integral of 
the potential energy changes when the crack 
grows. If there is a plastic zone in the material that 
does not surround the crack tip, then the potential 
energy release rate from the elastic region may not 
be meaningful in fracture mechanics terms, so 
then it may be necessary to estimate K directly 
from the crack shape near the crack tip, since the 
potential energy calculation for the whole boun- 
dary may become doubtful. Hence, a crack tip 
displacement element has "been introduced (Fig. 
lc). Alternatively, if the yielded zone encom- 
passes the crack or notch tip there will be further 
difficulties in evaluating suitable fracture mech- 
anics parameters (Fig. 2). In this case it is often 
necessary to examine the particular materials being 
tested to see what kind o f  plasticity occurs: for 
example, the line-yielded zone shown in Fig. 2a 
is a good model of craze yielding at a crack tip in 
certain polymers, and the more complex zone 
shown in Fig. 2b, based on a slip line field analysis, 
has 'son3eti~es been observed [9]. 

2. Theory, 
2.1. Elements used and the i r  stress fields 
The complex Variable stress functions, introduced 
by Muskhelishvili [10], are used, in which the 
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combinations O and ~5 of the stress components 

ax=, a~,~, and trxy in the xy-plane, and the displace- 
ments components Ux and Uy are calculated from 
the two analytic functions r and ~O(Z) (where 
z = x + iy)  using the expressions 

O =- }(Oxx+O~,r)  = 2Req~'(Z); (1) 

1 + 2iOxs) 

= 2 r  + (2) 

2 G ( U  x + iUr)  = Kr -- Zq~'(Z) -- if(Z), (3) 

where the elastic constants are G, the shear 
modulus and K, which is equal to ( 3 ~ u ) ,  where u 
is Poisson's ratio (for plane strain deformation) 
and the primes denote differentiation with respect 
to Z, and the bars indicate complex conjugates. 

2. 1. 1. The cons tan t  d isp lacement  e lement  
The stress function for this element is first found 
for the simple case where the displacement dis- 
continuity of magnitude bx + ibm, occurs along 
the x-axis from --a  to + a (Fig. l a). The element 
can be decomposed into two generalized edge 
dislocations. The stress functions for such a 
dislocation, with a displacement discontinuity of 
b x + ibm, running from a to -- oo along the x-axis 
are [11]: 

Co(Z) = 3' In (Z -- a) (4) 

7a 
Co(Z) = ~ l n ( Z - - a )  Z - - a  ' (5) 

where 7 =  G(b=+ib~ , ) /4 i r r (1 - -~ ) .  The  element 
can thus be made up of a "dislocation" of magni- 
tude 7 ending at a, and a "dislocation" of magnitude 
- -7  ending at --a.  When the appropriate stress 
functions are added, and substituted into Equations 
1 and 2 the resulting stress field can be evaluated 
from 

and 

| = 2Re  7 - - a  Z + a  ' 

_( 1 1 ) 
~b = 7 ---a Z + a  

Z w a  

(6) 

(7) 

Note that, in a Mohr circle diagram for stress 
components, the real function, O, represents the 
position of the centre of the circle along the 
tensile stress axis and the complex function, q~, 
represents the vector from the centre of the Mohr 
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when Z = x, from Equations 6 and 7, 

4ab~,C 
oy~ x2 - - a  2 (12) 

There is a singularity in oyy at x = + a. The value 
at the centre of the element o~,y(x = O ) = - -  
4b~,C/a can be used for evaluating stress boundary 
conditions, however, the average value of o~y over 
the length of the element a > x > -- a is infinite. 

Figure 3 (a)The boundary of a body represented by 
straight segments, using constant displacement elements. 
(b) A crack represented by 2 crack-tip dements and a 
linear element (the double headed arrows indicate the 
limits of integration for averaging the boundary stresses). 

circle to the point (oyy, o=y) on the circle. Hence, 
a rotation of co-ordinate axes by the angle 0 
leaves O unchanged, whereas the vector represent- 
ing �9 is rotated by an angle 20. 

If  the constant displacement element is moved 
to a general position in the Z.plane with its centre 
at Z i and its orientation specified by the complex 
number T i = ei~ (Fig. 3a), then the simplest way 
to evaluate the stress components at a point Z is to 
use the co-ordinate transformation, W, where 

W = (Z- -Z~) /T j ,  (8) 

so that the element is at the centre of the W plane. 
Equations 6 and 7 can then be used to evaluate 
Ow and ~w if the symbol Z is replaced by the 
symbol W throughout. Finally the stress com- 
ponents must be restored to the Z-axes using 

Oz = Ow (9) 
and 

�9 z = e ) w l r / .  (10) 

Note that, if 3' is defined, before the co-ordinate 
transformation from the Z to the W axes, as C 
or -- iC, where C is the real constant G/47r(1 -- u), 
and if its value is used unaltered in evaluating Ow 
and q~w, then it represents a unit normal or unit 
tangential displacement discontinuity in the W 
axes of  the element. 

One problem with the constant element can be 
seen by evaluating the stress component normal to 
it, along the x-axis. Since 

oyy = O + R e q ~  (11) 

2. 1.2. The linear element 
The linear element (see Fig. 1 b) can again be made 
out of generalized edge dislocations. If  the dis- 
placement discontinuity at the origin is b= + iby, 
and this tapers linearly to zero at x = a, then 
Equations4 and 5 can be multiplied by the 
density function p(x), where 

p(x) = 1/a f o r a > x > 0  

= 0 f o r x < O o r x > a ,  (13) 

and integrated over the limits oo > x > - oo to give 

1j-~ 
q~(Z) = a 0 ~ , l n ( Z - x )  dx 

- -7 .  

(14) 

If a similar process is carried out for ~(Z), and 
then Equations 1 and 2 are applied, the resulting 
stress field is given by 

O = Re [ - ~ l n ( Z ~ ) ]  ; (15) 

,I, = (~'-$--------)ha (z_~__q_) + 7 ( Z - 2 )  (16) 
a z ( z  - a )  

Note that the linear displacement discontinuity in 
Fig. lb  has not been terminated by adding a dis- 
location of magnitude -- (b x + iby) at the origin, 
and therefore it extends to - - ~  along the x-axis. 
This dislocation must be added if the displace- 
ment field of  the element iS~to~be evaluated, but if 
only the stress field is evaluated it may be ignored. 
This is because the complete element consists of 
two adjoining linear wedges (Fig. 3b) and the 
stress fields of the edge dislocations where the 
wedges join cancel out. 

For a single finear wedge along the x-axis, the 
stress components normal to its length, oN (= oyy), 
and tangential to its length~ aT (= ~r=y), can be 
evaluated as, respectively, 
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Figure 4 --avva/byC plotted against x/a. The solid line 
shows the variation in compressive stress normal to a half 
linear element such as that shown in Fig. l b  and the 
dashed line shows the variation in compressive stress 
normal to a haft crack-tip element such as that  shown in 
Fig. ld .  

2bye in (~_.~)  (17) Oyy = - -  a 

and 

OxY -- 7 

The variation of stress normal to the length is 
shown in Fig. 4. The average normal stress is 
evaluated to fred the influence coefficients of the 
elements. For example, 

and 

2 j.~,2 = - (x)dx a o O~YY 

= _ 4byC In 2 
a 

(19) 

5 Y ~ ' ( 0 > x > - - 2 )  = --2bvCln(27/4)'a (20) 

Note that the average value of avy in the interval 
a > x  > 0 is zero; so that if the boundary intervals 
for integration are chosen to coincide with the 
boundary segments, the self influence coefficients 
are zero. Later, this will be shown to lead, in some 
circumstances, to oscillatory solutions. 

2. 1.3. The crack tip element 
Fig. lc shows the crack tip element, which has its 
tip at the origin, and for which the displacement 
discontinuity builds up to bx+ iby at x =a .  

1 3 2 0  

Providing that only the stress field is required, 
it can be made up from the "dislocations" of 
Equations 4 and 5 using a dislocation density, 
p(x), such that 

1 
p(x) - 2Vf- ~-  for a > x > 0 

= 0 f o r x > a o r x < O ,  (21) 

to give the required parabolic crack-tip profile. 
Combining Equations 4 and 5 and 21 gives the 
stress function 

(1 

r = Jo p(x)~'o(Z) dx 

7 f '  1 dx 
2 J 0  (aZ) 112 (Z --x) 

_ 7 l o  . . . .  -" ' 

(22) 
Therefore,o = Re 7 log((Z)'/2+(a)U21] 

(aZ) u= \ ( Z W  = - (a)l/= /J �9 
. . . .  (23) 

Similarly, 
( r+~/Z/z-2q) ,  [(z) 1'= + (a) 1'= ) 

�9 = 

/ 

2 -- Z-) (a -- Z) (24) 
+_7(1 2 1 

For a crack-tip element running from --a to 0, 
Fig. l d, Equations 23 and 24 can still be used 
since 

Oleo(a, 3', Z) = On,at(a, 7 , -  Z) (25) 
and 

(Ihe~(a , % Z) = (b~i~at(a , 7 , -  Z), (26) 

where "left" and "right" refer to Fig. l c and d, 
respectively. 

From Equations 23 and 24, the tensile stress 
normal to the crack-tip element can be evaluated 
as 

- bv---C-C log -- (27) 
~  a(,,) ''= ~ i ' 

when Z = ua and 0 < v < 1. Fig. 4 shows how this 
normal stress varies along the length of the element. 
As the crack tip is approached the stress Oyy tends 
asymptotically to the value --2byC/a. 

2. 1.4. Inf ini te array o f  constant 
displacement elements in a 
semi-infinite sheet 

These elements will be used to model infinite 
arrays of edge cracks (or crazes) that are all normal 
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Figure 5 Elements for modelling an infinite array of edge 
cracks. (a)A single edge dislocation. (b)An edge dislo- 
cation with an image dislocation and shear stresses on 
y = 0, i.e., an edge dislocation in a half plane. (c) The 
edge dislocation in a half plane (as in b) is repeated at 
intervals of D to give an infinite array of dislocations. 
(d) A further array added to that of (c) to complete the 
elements. 

to the  free surface of  a semi-infinite sheet. Fig. 5 
shows the process of  building up the stress func- 
tions of  the elements. Because of  the mirror plane 
normal to the free surface the displacement dis- 
continuity has a single component  bx normal to its 
length. In Fig. 5a there is a single edge dislocation 
of  "Burger's vector" b ,  situated at (0, a), and the 
stress functions for this are 

Ca(Z) = ibxC In [-- i(Z -- ia)] (28) 

and 
abxC 

~a(Z) = ibxC ln, [-- i(Z -- ia)] 
Z - -  ia ' 

(29) 
where C = G/Or(1 --  v), as before. 

Fig. 5b shows the same edge dislocation in the 
half-plane y > 0. Using the method of  analytic 
continuation across the y-axis [12], the stress 
functions in the half-plane that  will give oy r = 
axy = 0 on the y-axis are 

Cb(Z) = Ca(Z) - -ZCa(Z  ) --  ~0a(Z) (30) 
and 

= Co(z) 

+ ZCL(g) + Z2r  (31) 

Equations 28 and 29 are substituted in W h e n  

Equations 30 and 31, respectively, and the stress 
components  evaluated using Equations I and 2, 
the results are 

Oh(Z) = - - 2 b x C [ I m ( - ~ - - ~ 2 ) +  2a Re (~-7) ] 

(32) 

(a) �9 
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Figure 6 Details of linear boundary element modelling. 
(a) Two elements, and the integration intervals for stresses 
(double head arrows) that lead to oscillatory solutions. 
(b) Special elements, consisting of a single array to dislo- 
cations, at sharp corners of the boundary. (c)Sharp 
corners produced by planes of symmetry. 

and 

L 4< Oh(Z) = -- 2ibxC 1 iy___k2 1 iy___32 + 
z 

(33) 

where Z1 = Z --ia and Z2 = Z + ia and Yl = Y  - - a  
and Y2 = Y  +a .  In both  Equations 32 and 33 the 
first term is the contribution of  a dislocation at 
(0, a) in an infinite plate, the second term is the 
" image" dislocation at (0, - a) in an infinite plate 
and the final term is the correction term to make 
the x-axis free of  stress components  o ~  or oxy. 
O'yy o r  Ox3~. 

In Fig. 5c the dislocations in Fig. 6b have 
been reproduced at intervals D along the x-axis. 
Now, 

- -  Z~ (34) 

and so 

r  = i bxC(n~_~ .~ lnD nS_~_~Z2LnD) 

-- 2abxC ~__~_~(Z2JnD)2 . (35) 

The sum of  the series are given by  [13] 

n=-~ Z - - n D  - D cot . (36) 
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So, differentiating both sides of Equation 36, gives 

( Z  - -  n D )  2 D 2 " 
(37) 

n m - o o  

~'c(z) - ibxDOr [cot (~-~)-cot @~) ] 
~2 

and 

| 

Similarly, the second combination of stress com- 
ponents can be evalulated as 

~c(Z) - 2ibDOr[cot(~-~)--iy, cosec2(~-~) 

+ 4ay~ c~ (~A)  c~ ( ~ )  l " D (40) 

Note the close similarity in form of Equations 39 
and 40 and Equations 32 and 33. 

FinaUy, Fig. 5d shows the complete constant 
element inside the repeating strip n/2 > Re W > -- 
zr/2. Equations 39 and 40 can be used twice, for 
a dislocation of Burgers vector b= at (0, ai) and a 
dislocation --b= at (0, a2), in order to build up 
the element. Transformation to the reduced vari- 
able W = zrZ/D simplifies Equations 39 and 40. 

2.2. Influence coefficients and the solution 
of the boundary value problem 

2.2. 1. Influence coefficients for 
constant elements 

When constant elements are used, the boundary 
stresses are usually only evaluated at the mid- 
point Of each element, as in [3]. Fig. 3a shows 
that there is a one-to-one correspondence between 
the number of elements and the number of bound- 
ary conditions, whether the boundary is open (for 
cracks etc.) or dosed. There are two unknowns 
for each element (the normal and tangential 
component of the displacement discontinuity) 

and there are two boundary conditions at each 
mid-point (the shear stress and the tensile stress 

normal to the boundary). If there are n boundary 
elements then there are 2n unknown displacement 
components xj and 2n known boundary stress 
components B i. These are related by influence 
coefficients Fii such that 

Fijxj = Bi, (41) 

where the Einstein repeated suffix convention 
implies the summation for j =  1 . . .  2n. The 
influence coefficient, Fir, is the stress component 
at the centre of the ith element due to a unit 
displacement component at the ]th element. From 
Equation 12 the self influence coefficients F u are 
equal to --4C/a when both the stress and the dis- 
placement are shear or normal to the element, and 
are otherwise equal to zero. Note that it would be 
impossible to use the average stress component 
along each boundary element in the calculation, 
because the self-influence coefficients would be 
infinite. 

Equation 41 is solved by Gaussian elimination, 
the number n usually being restricted to less than 
50 by considerations of available computer time. 

2.2.2 Influence coefficients for linear or 
crack-tip elements 

When crack-tip or linear elements are used, the 
first problem that arises when the boundary is 
open is that the number of elements is one less 
than the number of straight-line segments into 
which the boundary is divided (Fig. 3b). This 
problem has been overcome by evaluating the 
average boundary stress components over intervals 
that stretch from adjacent segment mid-points (as 
in [8]). Another reason for adopting this method 

i s  shown in Fig. 6a, where just two collinear 
elements are shown. On the central boundary AB 
(in Fig. 6a) the average stress component due to 
the right-hand wedge of Element 1, or the left- 
hand wedge of Element 2, is zero. If the segments 
are of equal length, the influence coefficient for 
Element 1 is that of its left-hand wedge, and this 
is equal and opposite to the influence coefficient 
of Element 2. Hence, if the displacements at the 
centres of Elements 1 and 2 are equal and opposite 
there would be a zero average stress component on 
AB. It was found that when boundary intervals such 
as AB were used with a larger number of elements, 
oscillatory solutions often occurred, with the 
displacement being alternatively large and positive 
and then large and negative at neighbouring 
elements. 
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If the boundary contains right-angled corners, 
as is common with closed boundary problems, it 
was found necessary to allow separate unknown 
displacements on either side of the corner, as in 
Fig. 6b, with the appropriate stress integration 
intervals. Similarly, if symmetry operators are 
used to reduce the length of the boundary being 
considered, it may be necessary to use a half- 
element at the end of the boundary (Fig. 6c). 
Reflection in the x- and y-axes can then be used 
to build up the total boundary. 

The average stress components on each bound- 
ary segment were found by evaluating the stress 
component at four points on each boundary, using 
positions and weighing factors from the Gaussian 
numerical integration method, as in [7]. This 
would give an exact answer if the stress component 
was a polynomial function, of degree ~< 7, of 
position. However, either along or near a bound- 
ary element the stresses vary more rapidly than 
can be accurately represented by a 7th order 
polynomial, see Fig. 4. Hence, it is necessary to 
calculate the influence coefficients analytically 
for both self-influence coefficients and for the 
influence of an element on its nearest neighbour, 
if small errors are not to be introduced into the 
solution. Equations 19 and 20 have already given 
some of the self-influence coefficients for linear 
elements, and further of these coefficients are 
listed in Table I. In the evaluation of influence 
coefficients, each straight boundary segment is 
examined in turn so the two halves of each element 
will be considered separately. If neighbouring 
segments are not collinear, or not equal in length, 
then the asterisked values in Table I do not apply; 

T A B L E I Serf-influence coefficients 

instead a correction factor is used to bring the 
Gaussian integration calculation up to the analytic 
integration value for the case of collinear equal- 
length segments and then this correction-factor is 
used subsequently for other cases. 

2.3. Removing any stress at infinity 
For cracked infinite or semi-infinite bodies it is 
difficult to arrange for boundary elements to 
apply the stresses at infinity. Consequently such 
problems are decomposed into two parts: 

(a) an infinite sheet having uniform stresses of 
ayy axx axy everywhere; 

(b) a cracked infinite sheet which is stress-free 
at infmity; o n  the crack surfaces additional stress 
components aN and aT have been added. 

When Parts a and b are superimposed, the sum 
of the normal and tangential stress components at 
the crack surfaces adds up to zero. 

When the crack growth is being modelled under 
constant applied stress conditions, then there are 
no energy changes in sub-problem a, hence the 
energy changes in sub-problem b can be used to 
calculate fracture mechanics parameters. 

The situation when dealing with craze growth 
problems (a craze is a crack-shaped yielded zone 
which transmits a tensile stress normal to its 
surface, typically found in glassy plastics) is more 
complex. If it is assumed that the only plastic 
deformation occurs inside the craze, then stored 
elastic energy calculations from sub-problem b still 
give the change of potential energy in the elastic 
region. However the plastic energy dissipation in 
the craze must be calculated using the original 
tensile stresses across the craze. 

Type  of  Boundary  length 
half-element 

n 

Shape o f  e lement  tryy axy  
- -  O s  - -  

by b x 

Linear Half  o f  same segment  / 

Linear Adjoining half  o f  * ~ ~ ._ 
next  segment  

Linear Whole o f  nex t  segment  * > "  
(which is a crack tip) / 

Crack tip Whole o f  nex t  segment  

Crack tip Adjoining half  o f  * ( " - -  - ~ = 
next  segment  

• 4 C l n  2]a 

+- 2C In (6.75)/a 

+ 4C  In 2/a 

- -  4 C  I n  2/a 

- -  2.9128 C/a 

*These values apply only if the  adjoining segments  are collinear and bo th  o f  length a. 
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2.4. Prediction of crack growth direction 
There are two main criteria that can be used to 

predict the direction of crack growth [14]. One 
postulates that the crack will grow in the direction 
in which the stress component a00 (in polar co- 
ordinates based on the crack tip) has the maximum 
tensile value. The other postulates that the crack 
grows along the radial direction in which the 
strain energy density is a minimum. Sih [14] 
compared predictions based on these two criteria 
with experimental results on the growth direction 
from angled cracks in glassy polymethyl metha- 
crylate (PMMA) and showed that, although both 
gave reasonable results, the strain energy criterion 
gave a slightly better prediction. There are a 
number of points that should be made clear before 
rejecting the maximum stress criterion, however; 
in real materials, like PMMA, yielding (in this case 
craze growth) preceeds crack growth, and if the 
growing crack follows the craze then perhaps the 
experiment tests the growth direction predictions 
for craze growth [15]. Also the direction of the 
maximum e00 value varies strongly with radial 
distance from the crack tip in the elastic stress 
field; in the experiment the crack growth direction 
changes rapidly in the initial stages of growth. 
Hence, the errors in measuring the growth direc- 
tion after a very small growth increment of, for 
example, 0.1 nun are large. 

The maximum stress crack growth direction 
criterion has been used in this work because it is 
easier to put it into effect in the computer pro- 
gramme. If a crack tip element is used, of length a, 
the boundary element solution gives the values of 
the displacement components bN and bT normal 
and tangential to its length at the open end of the 
element. From these the stress intensity factors KI 
for crack opening and K n for crack-in-plane 
sliding can be calculated using 

K I +/KII = C%/~-~  (b N + ibT). (42) 

For mixed-mode loading the stress field adjacent 
to the crack tip is dominated by the KI and KII 
terms and the maximum aoo value occurs when 
or0 = 0 or when 

Klsin0 +K2(3 cos0--1) = 0, (43) 

where 0 is defined in Fig. l d. In the computer 
program, once the ratio KI/KII is calculated, 
Equation 43 is solved numerically by the Newton- 
Raphson method (this seems to be the most 
reliable way of getting to the maximum tensile 
stress position by the quickest route). 
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When only linear elements, or constant elements 
are used around the crack boundary (as when 
craze growth in polymers is being modelled), the 
stress component aoo has to be evaluated at a 
given radial distance from the final element end, 
and the maximum position found by a binary 
search method. 

2.5. Energy changes as a consequence of 
crack or yielded zone growth 

2.5. 1. Calculation of potential energy 
changes 

The potential energy per unit thickness of a planar 
body, V, is defined, in the absence of body forces, 
by 

V = f T U d A -  I~ T.Uds, (44) 

where the strain energy density, U, is integrated 
over all the elements of area dA in the body, r, 
and the product of surface traction T and the 
surface displacement vector U is integrated over 
the elements ds of the perimeter Z. If only trac- 
tions are prescribed in the boundary value problem 
being solved, then for a linearly elastic body, 

fr  UdA = �89 !~ T.Uds. (45) 

The traction T can be split into components TN 
and TT in the local coordinate axes TN at any 
point of the perimeter, where N is the inwards 
facing normal. The stress components at the 
surface are aNN =--TN and aWN = -  TT. The 
displacement vector U can be similarly split into 
components U N and UT. Hence, from Equations 44 
and 45 the potential energy, V, is 

V = �89 ~ z (ONN UN + erN UT) ds. (46) 

When boundary elements with displacement dis- 
continuities are used, Equation 46 must be inter- 
preted with care, and the following two cases are 
distinguished. 

(a) For a closed boundary: The convention is 
used that the positive side of the displacement 
discontinuity is on the inside of the boundary when 
the boundary is transversed in an anti-clockwise 
direction (Fig. 3a). Hence, to evaluate the potential 
energy of the body inside the boundary the 
displacements U~ and U~ must be evaluated on 
the boundary segments, and used in Equation 46. 
Conversely, for a cut-out hole in an infinite body, 
the boundary of the hole should be transversed in 



a clockwise manner, so that U~ and U~ can still 
be used to evaluate the potential energy of the 
body. 

(b) For a crack in an infmite body: Both sides 
of the displacement discontinuity of magnitude 
bT + ibN supply energy to the body, so Equation 46 
should be used with br  and bN replacing U T and 
UN, respectively. 

When constant elements are used, it is assumed 
that both the stress components and the dis- 
placement components remain equal to their 
mid-segment values over the whole length of 
each boundary segment. Hence, the integral in 
Equation 46 can be replaced by a summation over 
all elements, with as being replaced by the element 
length. When linear or crack-tip elements are used 
for crack problems, it is assumed that the stress 
components have their average values along the 
whole of each boundary segment, so that the 
potential energy can be calculated by multiplying 
this by the average value of the displacement jump 
along the boundary segment. 

2 . 5 . 2 .  Meaning of the potential energy 
changes 

For a purely elastic body containing a crack 
length, a, and for which the potential energy per 
unit thickness is V, the so-called "strain energy 
release rate", G, is defined by 

G = --  3V[Oa. (47) 

The name is only appropriate for bodies loaded 
under fLxed-grip conditions, and G should, in 
general, be called the potential energy release rate. 
G is a useful fracture mechanics parameter, from 
which the stress intensity factor, K, can be calcu- 
lated using 

= E o / ( 1  - ( 4 8 )  

where E is Young's modulus, under plane strain 
conditions, for a single-ended crack, or for a crack 
that is growing symmetrically at both ends. 

For elastic-plastic materials there Hill be a 
plastic zone at the crack tip, so the energetics of 
crack growth must be reconsidered. Rice [16] has 
deemed an integral, aT, for a notch that is parallel 
with the x-axis 

s = cr dy - T. x as , (49)  

where P is now a curve that runs from the lower 
notch surface anti-clockwise around the crack tip 

to the upper notch surface. Rice showed that 

S = --  OV/~a, (50) 

where V is now the potential energy per unit 
thickness of the elastic region. Thus, the same 
quantity as in Equation 47 can still be used as 
a fracture mechanics parameter. This analysis by 
Rice [16] is strictly applicable only for non-linear 
elastic bodies, so it can only be applied to elastic- 
plastic bodies where the applied loads never 
decrease, so that there is never any reverse plastic 
yielding (which would prevent the strain being 
uniquely related to the stress). 

Rice did not consider the situation of a crack 
remaining stationary while the yielded zone at the 
head of  it grows, or of a yielded zone growing in 
the absence of a crack. If the size of the yielded 
zone is measured by a length R, then the quantity 
- 3 V / O R  may be a parameter that can be used 
to predict yielded zone growth. If equilibrium 
thermodynamics is applied to the elastic region in 
an elastic-plastic problem, then the principle that 
the equilibrium state of the region occurs when its 
free energy is minimized could be interpreted such 
that the yielded zone ~ grow only as long as 
--  3V]3R  is positive. 

3. Results 
3.1. Comparison of elements for the 

growth of a central crack 
When a central crack (extending from x = - -a  to 
x = a along the x-axis) in an infinite sheet is 
subjected to an internal pressure, p, the stored 
elastic energy of the sheet is given by 

W = 7ra2p2(1 --  v2)/E (51) 

and the crack-opening profile is given by the 
displacement 

P 
U v = 4(1--V2)E(a2 x2)a/2,  (52) 

for -- a < x < a and y = 0. Any numerical solution 
to this boundary value problem should give 
energies and displacements that approximate to 
these results, the degree of approximation improv- 
ing as the number of elements increases. This is 
shown to be the case in Table II. 

It can be seen from Table II that the errors are 
also reduced with the use of better element types, 
and that calculations of G, which are made using 
the increment in V, when the number of elements 
is incremented by one, are more accurate than 
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T A B L E I I Percentage difference between numerical 
approximations and analytic results for a central crack 
using p = 3 • 106,E = 3 • 109, I~ = 0.45 

Element type Number  of  W/a 2 GII 7~ KI[~/a 
elements 

4 12.5 5.6 

Constant 9 5.6 2.9 
25 2.0 1.0 

4 -- 3.6 --  0.9 
Linear 9 --  1.2 --  0.3 

25 --  0.2 --  0.01 

4 0.5 --  0.08 
Linear 

9 0.07 --  0.05 
+ crack-tip 25 --  0.02 --  0.02 

- -  2 . 7  

- -  1.1 
- -0.3 

those of V. The signs of the discrepancies are 
explained by looking at the predicted crack pros 
for 4-element cracks shown in Fig. 7. The constant 
element model largely ignores the local stress 
fields of the "dislocations" at the ends of the 
elements, particularly that at the end of the crack, 
so that, in the model, the rectangular end of the 
crack is too wide. The consequence of this is that 
the area inside the crack profile (representing the 
stored energy) is larger than the area under the 
analytic crack shape. On the other hand, the linear 
element model gives a good approximation to the 
crack shape except near the crack tip where it "cuts 
the corner", and hence underestimates the stored 
elastic energy. 

The last column of Table II shows that esti- 
mating K from the opening of a single crack-tip 
element is not as accurate a method of estimating 

fracture mechanics parameters as the energy 
methods, but that it gives acceptable errors, < 1%, 
when the total number of elements is greater than 
ten. 

3.2. Growth of an infinite array 
of edge cracks 

A more complex problem than that discussed 
above is the infinite array of edge cracks, modelled 
by the repeating constant elements shown in 
Fig. 5d. The analytical solution to this problem is 
known [17] even if the integrals involved must be 
evaluated numerically. The limiting case of the 
crack length, a, being much smaller than the crack 
separation, s, approximates to the single edge 
crack for which [18] 

G I = 1.9858(1--~2)022a/E, (53) 

where ~ is the tensile stress at infinity. 
The other limiting case, where a>>s, is 

equivalent to that of a long longitudinal crack 
growing in a pressurized pipeline for which the 
"strain energy release rate" is given by 

G~* = S(1 -- v2)o2/2E, (54) 

where S is the circumference of the pipe in the 
pipeline case. Fig. 8 shows a comparison between 
Bowie's calculations [17], and the repeating 
constant element calculations. Both the strain 
energy release rate and the crack length are 
normalized by dividing by the crack separation. 
The agreement between the two calculations is 
good and they show that the strain energy release 
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Figure 7 Modelling the crack opening of  a centre crack in 
an infinite plate under tension. - -  - -  constant elements; 
. . . . . . .  linear elements; - -  linear plus crack-tip 

elements, oooo analytical values, for the parameters of  

Table II, and a = 1.0 m. 
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Figure 8 Potential energy release rate, GI, (normalized 
with respect to G~ of  Equation 54) plotted against crack 
length, a, (normalized with respect to crack separations), 
for an infinite array of  edge cracks; o results of  this paper, 
+ results of  [171. 
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rate reaches a plateau value once the crack length 
exceeds 30% of the crack separation. 

3.3. Growth of linear yielded zones from a 
central crack under plane stress 
condi t ions (Dugdale model) 

The simplest type of elastic-plastic problem is 
one where the yielded zone is confined to a line 
(in two-dimensions), which simply extends as the 
applied load increases, and in which the stresses 
in the plastic zone are constant. The Dugdale 
model [19] is applicable to yielding in thin sheets 
of material in which plane stress conditions exist 
in the plastic zone. A central crack of half-length 
a will have at each end a yielded zone of lengthR,  
across which the tensile stress is ao (the appropriate 
yield stress) and 

R/a = see (rra~/2Oo) -- 1, (55) 

when the stress component applied at infinity, 
perpendicular to the crack, is o=. Dugdale solved 
this problem by finding the stress intensity factor 
KA for a central crack of length 2(a + R) that has 
an internal pressure a~, and the stress intensity 
factor K B for the same crack with surface tractions 
of ao applied for a + R  > Ixl > a .  On adjusting 
the ratio R/a until Ka + KB = 0, Equation 55 is 
obtained. It can be shown that this condition of 
no stress singularity at the yielded zone tip also 
does not violate Tresca's yield criterion in the 
surrounding elastic material. 

It is not possible with the linear boundary 
element model to use Dugdale's approach in order 
to determine the equilibrium yielded zone length, 
R. Two alternative methods can be used: 

(a) The yielded zone can be increased in length 
by adding further elements until it is predicted 
that the end element has a negative normal dis- 
placement discontinuity, bN. As this corresponds 
to a physically inadmissable situation in the 
elastic-plastic solid being modelled, the yielded 
zone growth must have ceased at the previous 
increment. 

(b) The rate of decrease of potential energy with 
yielded zone length --~V/~A can be evaluated. 
When this is no longer positive it is postulated 
that the yielded zone will stop growing. In this 
state, the stored elastic energy, in the elastic region 
surrounding the yielded zone, has reached its 
maxumum value. 

When constant elements were used then 
Alternative b was found to be the first to operate, 

T A B L E I I I Line yielded zones from a central crack 

Stress R/a 

o~/ao Equation 55 Linear Constant Element 
elements elements length 

0.2 0.051 0.050 0.045 0.005 
0.3 0.122 0.121 0.112 0.01 
0.4 0.236 0.232 0.222 0.01 
0.5 0.414 0,417 0.40 0.02 

whereas when linear elements were used both 
criteria for the zone to stop growing came into 
effect simultaneously. The accuracy of the exper- 
imental results is compared with Equation 53 in 
Table III. If Alternative b is used it is possible to 
interpolate between results to get a more precise 
estimate of R. 

Table lII shows that the linear boundary 
elements give a sufficiently accurate result. As a 
further check, the predicted opening prof'de of the 
crack and yielded zone is compared in Fig. 9, for 
o=/Oo = 0.3, with the analytical expressions given 
in [20] for the Dugdale model. The agreement in 
profile is good. 

Finally, both the stored elastic energy and 
the total dissipated energy have b e e n  calcu- 
lated analytically by Weertman [21] for the 
Dugdale model. Using the set of parameters 
0..= 5 X 107 Nm -2, Oo = 1.0 x l0 s Nm-% v = 
0.45, E = 3 x 109 and a = 1 m the difference 
between the energies calculated analytically and 
those calculated from the equilibrium length of 
the linear element model was found to be 0.1%, as 
shown in Table W. 

0"015 

0.010 "~'~.~,~ 

0.005 

0'00"90 0'g5 1.00 1.05 1.10 
x 

Figure 9 Crack and yielded zone opening displacement for 
a line yielded zone where a=/a o = 0.3, or== 30MNm -2, 
E=  3GNm -2, v= 0.45. analytical results; 

- -  results using linear elements. 

1327 



T A B L E IV Energies of a central crack in an infinite 
sheet plus equilibrium Dugdale yielded z o n e  

Parameter Analytical Value from 
value linear element 

calculation 

Potential  energy (M J) 2 .346 t  2.345* 
Plastically dissipated 

energy (MJ) 0.6241 0.6236 

*For  a yielded zone o f  length R/a = 0.42,  made  up  f rom 
21 elements.  
tUs ing  V = - -  8(1 - -  v2)ao2a 2 log see Oro~/2ao)/E~r. 

3.4. Growth of a plane strain plastic zone 
from a circular hole in an infinite 
sheet under tension 

This is an example of a more complex elastic- 
plastic problem, of the type usually tackled using 
finite element methods. In general, the shape of 
the plastic zone is unknown in problems of this 
kind, but, for certain materials that exhibit little 
work hardening, the yielded zone has been observed 
experimentally to have a particularly simple shape 
[9]: one that corresponds to a simple slip-line 
field of orthogonal logarithmic spirals (Fig. 2b). 
The yielded zone was observed to grow by increas- 
ing the angle, a, of the outermost slip lines, so, in 
modelling the yielding process from the circular 
hole in a sheet, a was taken as the disposable 
parameter. Using constant displacement elements 
around the outer boundary of the hole and the 
yielded zone, the elastic boundary value problem 
was solved for a range of a-values. Fig. 10 shows 
how the potential energy of the elastic region 
varies with a for a particular ratio of the tensile 

-1"35 

V(MJ) 

-1-L 

-145( 

/ 
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+ 

' 2'0 I /410 
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Figure 10 Variation o f  potential  energy, V, with yielded 
zone extent ,  ~, for a no tch  o f  radius 1 m (Fig. 2b) 
predicted using cons tant  displacement elements,  a ~ =  
40 MN m-2 ; shear yield stress 30 MN m-2,  E = 3 GN m -2 ; 
v = 0.45. 

stress at infinity to the shear yield stress of the 
material. Using Alternative b of Section 3.3., the 
equilibrium yielded zone size is predicted to occur 
when the potential energy is a maximum at an 
angle, a, of 15 ~ To discover ff this is a realistic 
result, the stresses in the elastic region outside 
the yielded zone were calculated for a range of 
a-values. It was found that the Tresca (or Von 
Mises) yield criterion was violated in the "elastic" 
region unless the yielded zone had an angle of 
extent, a, of about 20 ~ Hence, the two methods 
of predicting the equilibrium yielded zone size 
do not exactly coincide in this case. 

3.5. Predictions of crack growth 
directions 

For the simple situation of a central crack at an 
angle, ~, to the uniaxial tension applied at the ends 
of an infmite sheet (see the inset in Fig. 11) the 
use of linear plus crack-tip boundary elements 
gives good predictions of crack growth direction. 
Even when only 10 equal-length elements are used 
to model half the crack, the ratio of the stress 
intensity factors KII/KI, found from the displace- 
ment discontinuity of the crack-tip element, is 
exactly equal to the analytical value of cot/7. The 
subsequent solution of Equation 43 will then 
give the crack growth direction according to the 
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_i tog,or/  
Figure 11 Growth directions o f  a crack initially at an  
angle ~ = 80 ~ to the  applied stress. The  band shows the  
exper imental  results [14],  and  the  curve is the  predicted 
angular posi t ion o f  m a x i m u m  gee as a func t ion  o f  the  
radial distance, r, f rom the crack tip. Posi t ion 1 is the  
predict ion o f  the  aO0 criterion at r = 0, and Posit ion 2 
is the  strain energy criterion for v = 1/3. 
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Figure 12 Growth path predictions 
for two off-set, initially-parallel cracks 
2.3 mm long (see inset) +++ constant 
displacement elements searching for 
or00 at radius, r =0.05 mm, ooo linear 
elements. 0 is the centre of symmetry 
of the two cracks. 

maximum qoo stress hypothesis. However, when 
the same problem was tackled using 10 equal- 
length constant-displacement elements to model 
the half-crack, and searching for the maximum 
e00 at a radius equal to the element length, large 
errors occurred. For example, at a crack orien- 
tation of fl = 60 ~ the predicted growth direction 
was 0 = 32 ~ whereas the analytical value as 
r ~ 0 is 43 ~ This is a severe test, as the crack 
deviates sharply from its previous direction. 

Sift [14] has discussed the agreement between 
experimental measurements of the crack growth 
direction, using the glassy thermoplastic poly- 
methylmethacrylate (PMMA), and the predictions 
of the maximum stress and the strain energy density 
criteria. As a by-product of the stress analysis 
carried out here, it was possible to find the position 
of the maximum stress, a00, at various radial 
distances, r, from the crack tip. Fig. 11 shows 
that, for the crack orientation/3 = 80 ~ the position 
of the maximum changes considerably in the 
neighbourhood of the crack tip (for example, for 
r/a < 0.01). The range of experimental values 
observed is also indicated; it is likely that these 
were measured at a radial distance of between 
10 -3 and 10 -2 a. It is also known [22] that before 
a crack in PMMA can grow, a craze of length 
~30 /1m forms at its tip, and that the initial 
path of crack growth follows the craze plane. For 
these reasons it seems highly unlikely that the 
experiments with PMMA are accurate enough to 
favour the maximum stress criterion over the 
strain energy criterion or vice versa. It can be 
concluded that either criterion gives a good first 
approximation to the crack growth direction. 

We have recently analysed a more complex 
crack-growth situation using constant displace- 
ment elements [23] : that of two parallel but off- 
set cracks in an uniaxial stress field (Fig. 12). 
Repeating the calculation using linear elements and 
crack-tip elements at both ends is a useful check of 
the original calculation and it provides a better 

insight into the changes in the fracture mechanics 
parameters. The predicted crack-growth path in 
Fig. 12 is almost identical to that of  the earlier 
constant element model. This shows that the 
presence of a single dislocation at the end of the 
"crack" in the constant element model does not 
badly affect the predicted crack growth path so long 
as the position of Co0 is searched for at a radius 
equal to the element length and provided that the 
crack path only changes direction gradually. Using 
the crack-tip elements enables the separate stress 
intensity factors, K[, at the inner and outer crack 
tips to be plotted against crack growth, see Fig. 13 
(both inner crack tips are assumed to grow, 
whereas the outer crack tips do not, and the model 
maintains a two-fold rotational symmetry axis at 
the origin). The K u  values of both crack tips are 
less than 10% of the KI values. Fig. 13 shows that 
KI of the inner crack tips reaches a maximum 
value just after the crack projections overlap on 
the x-axis, then the value decreases rapidly. How- 
ever, the K I value of the outer crack tips increases 
slowly and steadily as the crack pair approximates 
more and more to a large single crack. A further 

x x 
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+ + + + + 

+ * 20 0"2 + + 

'E ~e 

~- 0.1 10 ~ 

0 0"2 O.L 0-'6 0 
Crock growth (mm) 

Figure 13 Variation of fracture mechanics parameters for 
the crack growth shown in Fig. 12. + K I of outer crack 
tips, X K I of inner crack tips, o G for whole system, o~ = 
3MNm-2,E = 3GNm-21 v = 0.45. 
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interesting feature is that the "strain energy release 
rate", G, varies in a way that is not directly related 
to either of the K1 values, and in fact becomes 
zero after 24 growth steps, when both KI values 
are non-zero. It can be said that the still-open 
innermost crack tips are "stealing" energy from the 
centres of the other cracks, and that the net result 
of  this process is a zero change in the potential 
energy of the system. It shows clearly that when 
there are two crack tips in dissimilar stress field 
surroundings, then the global fracture mechanics 
parameter G is no longer uniquely linked to 
the local crack tip stress field parameter K by 
Equation 48, as is the case for a single central 
crack. 

4. Discussion 
It has been shown that boundary elements using 
linear variations in displacement discontinuity give 
better approximations to the analytical solutions 
of crack problems than do constant displacement 
elements. The disadvantage of this former method 
is that the computation time needed for the 
predictions is increased by two to three times. 
However, less elements are needed in order to 
achieve the same degree of accuracy. Crack-tip 
elements are useful in that, as well as improving 
the accuracy of the stress field simulation at the 
crack tip, they allow a direction evaluation of the 
fracture mechanics parameters K I and K u without 
necessitating the evaluation of the potential energy 
changes. 

Compared with the finite element method the 
data input to the boundary element method is 
much simpler for crack problems in infinite 
sheets; the solution time is relatively fast provided 
tha t  the number of elements is kept small. For 
example, using an ICL 1906 A computer, a problem 
using 33 linear boundary elements (each of which 
had 3 images because of the symmetry of the 
body) was solved in 84 sec; an evaluation of the 
stress field at 100 points took 46 sec. 

The problem of the equilibrium length, R, of a 
line yielded zone was solved using the criterion 
-- a V/OR = 0, and this was shown to give the same 
results as Dugdale's solution. This criterion can be 
contrasted with Rice's J integral, which has a value 
of- -  a V/aa for the growth of a crack with an equilib- 
rium-sized yielded zone. Thus, the potential energy 
calculations, that emerge readily from the boundary 
element method, are useful in both plasticity and 
fracture mechanics calculations. When a more 

complex elastic-plastic problem having a yielded 
region was analysed the criterion - av/aR = 0 no 
longer gave an exact prediction of the yielded zone 
size that would avoid violating the yield criterion. 
However, the boundary element method is still a 
rapid way of analysing the stresses that correspond 
to the observed pattern of yielding in a particular 
material. It is certainly a better method than slip 
line field analysis when the observed plastic zone is 
seen to be surrounded by elastic material, since 
slip line field analysis assumes a rigid-plastic 
material and the slip lines cannot end in the 
interior of the body. 

It was possible to make accurate predictions of 
crack growth directions using crack-tip elements 
and it would appear that the maximum circum- 
ferential stress criterion is appropriate to glassy 
materials like polymethylmethacrylate (PMMA). 
Further tests of the usefulness of the boundary 
element method are described in the accompanying 
paper on its application to crazing in glassy plastics 
[24]. 
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